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Abstract
This paper addresses the question of whether in a gauge theory coupled to
gravity, internal and spacetime transformations can be mixed. It is shown that
if the VEV of the gauge field is flat, the symmetry group is always a product of
internal and spacetime symmetries. On the other hand, if the VEV of the gauge
field is not flat it is impossible to properly define the notion of ‘spacetime’
transformations; as a consequence, if the symmetry group is nontrivial, mixing
generically occurs.

PACS numbers: 11.15.−q, 11.30.−j

The celebrated Coleman–Mandula (CM) theorem [1] asserts that, under rather general
conditions, the symmetries of the S-matrix must be the product of the Poincaré group and
some internal symmetry group. It forbids mixing spacetime and internal symmetries. This
theorem is sometimes misunderstood as forbidding any mixing between internal and spacetime
invariances. The mistake here lies in applying it to transformations that are not symmetries
of the S matrix. For example, a Yang–Mills theory in flat space is invariant under Poincaré
transformations and under local gauge transformations, and these two invariance groups do
not commute. Such mixing between spacetime and internal transformations is not forbidden
by the CM theorem.

On the other hand, since the existence of a Poincaré subgroup is one of the hypotheses of
the theorem, it is sometimes said that a quantum field theory in a curved background metric
will not be subject to the same restrictions. While the CM theorem itself does not apply
directly to these cases, some generalization thereof could still lead to similar conclusions. In
fact I will show below that in a large class of examples where the CM theorem cannot be
applied, spacetime and internal symmetries still do not mix.

Spacetime transformations feature prominently in the theory of gravitation, so a
generalization of the CM theorem to that context would be very useful, especially if it could
put restrictions on possible ways of unifying gravity with other interactions. However, the
proof of the theorem relies heavily on the use of mathematical tools that are peculiar to flat
space. It is not immediately clear how to generalize it to other situations. For this reason, in
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this paper we will discuss the possible mixing between internal and spacetime transformations
starting from an entirely different set of hypotheses. We will restrict ourselves to the case of
gauge theories, meaning theories whose dynamical variables are a gauge field Aµ with values
in the Lie algebra of a group G, matter fields ψ carrying linear representations ρ of G, and a
metric on spacetime, gµν . Insofar as our present understanding of fundamental interactions is
based on gauge theories, this is not much of a restriction. Furthermore, non-gauge theories
can be seen as special cases where Aµ is non-dynamical and flat and similarly one can switch
off gravity by declaring gµν non-dynamical and flat.

For the subsequent discussion it is important to define precisely what is meant by symmetry
group of a theory. In general, the symmetries are not entirely determined by the Lagrangian:
they depend also on the properties of the vacuum state, more precisely on the vacuum
expectation value (VEV) of the fields. For example a scalar theory can exist in different
phases characterized by different VEVs, and each phase has a different symmetry group. In a
gauge theory the situation is more complicated. To see why, let us introduce some terminology.
We will call I the ‘invariance group of the theory’, namely the transformations of the fields
that leave the action invariant. It consists of ‘Yang–Mills’ transformations parametrized by
some function g(x) with values in G (possibly a constant) and diffeomorphisms x ′ = f −1(x).1

In infinitesimal form, if g = 1 + ε,

δεAµ = Dµε, δεψ = −ρ(ε)ψ. (1)

Infinitesimal diffeomorphisms x ′µ(x) = xµ − ξµ(x) are parametrized by vectorfields ξµ and
the variation of any field φ (here including also the gauge fields Aµ and the metric gµν) under
such a transformation is given by the Lie derivative

δξφ = Lξφ. (2)

From a physical standpoint, we will then distinguish two classes of invariances. If a
transformation: (g1) leaves the action invariant and (g2) is such that the transformed fields are
physically indistinguishable from the original ones, then we will call it a ‘gauge invariance’.
We denote by G ⊂ I the group of gauge invariances. We will see that it is a normal subgroup
of I. The presence of a gauge invariance means that the kinematical description of the theory
is redundant, because it contains unphysical degrees of freedom. On the other hand if a
transformation: (s1) leaves the action invariant, (s2) is such that the transformed fields can be
physically distinguished from the original ones and (s3) leaves the vacuum invariant, we will
call it a ‘symmetry’. Unlike gauge transformations, symmetries by definition depend on the
VEVs—a set of classical fields.

A convenient way of studying gauge theories is the background field method. One splits
the metric and the gauge field into classical backgrounds g(0)

µν and A(0)
µ and quantum fluctuations

hµν and aµ. The backgrounds are identified a posteriori with the VEVs of the respective fields,
so that 〈hµν〉 = 0 and 〈aµ〉 = 0. Strictly speaking, this procedure cannot be correct because
the dynamics of the theory is gauge invariant and it cannot select a particular representative in
the gauge equivalence class2. For example, in the case of Yang–Mills theories this description
contradicts the Elitzur theorem [2], which says that only gauge invariant operators can have
nonzero VEV. See also [3] for a related discussion. In spite of this, in the first part of this
paper we will stick to the popular background field terminology and identify ‘the vacuum’
with a particular choice of classical fields

(
A(0)

µ , g(0)
µν

)
. We call S(0) ⊂ I the group of

symmetries of these classical fields. We will discuss the groups I,G and S(0) in a number of

1 Throughout this paper we will use the active point of view; all transformations change the fields leaving the
coordinates fixed.
2 I wish to thank Abhay Ashtekar for a discussion of this point.
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cases, finding both examples and counterexamples to the possibility of mixing internal and
spacetime transformations. It will be shown that the structure of the symmetry group does
not depend on the particular choice of the representative in a gauge equivalence class. Since
there may still be doubts about the correctness of this procedure, we will then briefly discuss
an alternative formulation of the problem in which gauge invariance is not broken. In this
formulation the vacuum will be described by a gauge equivalence class of classical fields and
it will be shown that the same results are obtained.

As a warmup, let us begin by discussing the case when the VEVs are

A(0)
µ = 0, g(0)

µν = ηµν. (3)

The theory describes gauge bosons, matter fields and gravitons propagating in flat space. This
is the domain in which one expects the CM theorem to apply.

As is well known, Yang–Mills fields can be interpreted geometrically as connections in
a principal bundle P, while matter fields are sections of associated bundles. For our purposes
this has the advantage that instead of talking of the action of I on the fields, given by (1,2), we
can talk about its action on P, which is easier to visualize. In the case at hand P is trivializable,
meaning that it is diffeomorphic to a product M ×G, (M is spacetime), so we can coordinatize
P by pairs (x, y), with x ∈ M and y ∈ G. We call ‘internal’ transformations those that leave
the x coordinates fixed, and ‘spacetime’ transformations those that leave the y coordinates
fixed. Generic transformations can be represented by pairs (f, g) consisting of a spacetime
transformation f and an internal transformation g. As already noted, spacetime and internal
transformations do not commute in general, so we choose conventionally that the internal
transformation acts first. The transformation (f, g) maps the point (x, y) ∈ P to the point
(f −1(x), g−1(x)y) and the composition of two transformations is

(f2, g2) ◦ (f1, g1) = (
f1 ◦ f2, g1 · (

g2 ◦ f −1
1

))
, (4)

where g1 · g2 denotes multiplication in G. One can now easily verify that the internal
transformations are a normal subgroup I∗ of I, but the spacetime transformations are not
normal. The quotient I/I∗ is isomorphic to D, the group of diffeomorphisms of M, and I is
the semidirect product of I∗ and D.

In high energy experiments only the momenta and the charges of the incoming and
outgoing particles can be measured; therefore the transformations that tend to the identity at
infinity are gauge invariances. ThusG is the normal subgroup ofI consisting of transformations
that tend to the identity at infinity. Note that the transformations of G have the property that
they leave the asymptotic behavior of the fields at infinity unchanged: δεφ → 0 and δξφ → 0
for any field φ. In the group G there is a normal subgroup G∗ = G ∩ I∗ of internal gauge
transformations, namely the internal transformations that tend to the identity at infinity. The
quotient G/G∗ is the (normal) subgroup D̄ ⊂ D of diffeomorphisms of M that tend to the
identity at infinity. From (4) one sees that in the groups I and G, spacetime and internal
transformations are always mixed in a nontrivial way.

Not so in the symmetry group. The transformations that leave the VEVs (3) invariant are
the ‘rigid’ (constant) internal transformations and global Poincaré transformations. These two
groups commute and therefore the symmetry group is S(0) = G× Poincaré.3

As mentioned before, the choice of the VEV in (3) breaks the gauge invariance of the
theory. Does the result depend on the choice of classical fields within the gauge equivalence
class? Suppose that we choose the VEVs

(
A(1)

µ , g(1)
µν

)
to be gauge transforms of (3) with

3 It is assumed that all the matter fields ψ transforming linearly under G have vanishing VEV. If among them there
were some Higgs field with a nontrivial VEV, this would reduce the group G to some subgroup H and the discussion
would go through with obvious modifications.
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some gauge transformation (f (x), g(x)). The symmetry group S(1) defined by
(
A(1)

µ , g(1)
µν

)

is conjugate to S(0): if h is an isometry of g(0) (a Poincaré tranformation) f −1 ◦ h ◦ f is
an isometry of g(1) = f ∗g(0), and likewise for the internal transformations. Thus S(1) is
isomorphic to S(0); the symmetry group does not depend on the choice of fields within a gauge
equivalence class.

These arguments were based on consideration of the classical configuration space of the
theory, but if we postulate that in addition to leaving the action invariant, the transformations
of I also leave the functional integration measure invariant, then at least formally they will
also be invariances of the quantum theory. In particular, the transformations of S(0) will give
rise to symmetries of the S matrix. So, while our starting point and our line of reasoning were
quite different, we have reached the same conclusion as the classic CM theorem. In fact one
could say that we have merely produced an example of application of that theorem, were it
not for the fact that these arguments can now be generalized to other situations.

We could now consider non flat but asymptotically flat metrics and gauge fields; to be
even more general let us consider a different setup in which the world is turned inside out.
Instead of thinking of the laboratory as a fixed reference frame at infinity, as is natural in
describing scattering experiments, we think of it as a coordinate system in an infinitesimally
small spacetime neighborhood of a point x̄ in a gravitational field. (Besides being of small
extent in space, the laboratory is also supposed to operate for a very short time.) We can
give an idealized description of this observational setup as an orthonormal frame ē in the
tangent space at x̄. With this frame, one can directly measure the components of spacetime
tensors at x̄. We assume that the observer also has some apparatus that can be used to
measure the internal degrees of freedom of the matter fields ψ at x̄; this apparatus can be
described geometrically as a ‘G-frame’ in internal space, or equivalently a point p0 ∈ P over
x̄. Finally, we assume that the observer can measure the infinitesimal parallel transport at x̄;
this is described geometrically by the horizontal lift ẽ of ē at the point p0.4 Since fields with
different values at x̄ are physically distinguishable, the variations given in (1) and (2) must
vanish at x̄ for gauge transformations. This implies that the infinitesimal generators of gauge
transformations are parametrized by Lie algebra-valued functions ε and vector fields ξ such
that

ε(x̄) = 0, ∂µε(x̄) = 0, ξ ν(x̄) = 0, ∂µξν(x̄) = 0. (5)

This setup could be used to describe our position in a cosmological context. The previously
discussed case of scattering experiments in flat space could also be regarded as a special case
of this construction by thinking of M as the conformal compactification of Minkowski space
and x̄ as the point at infinity.

Let us now assume that the VEV of the metric is not flat but the VEV of the gauge field
is still flat, so that P can again be described as the product M × G. There is no Poincaré
group anymore, so we are definitely outside the domain of applicability of the classic CM
theorem. Does this mean that we can have symmetry groups mixing internal and spacetime
transformations?

We observe that (5) implies at the point x̄,

δεA
(0)
µ = D(0)

µ ε = 0; δξA
(0)
µ = ξν∂νA

(0)
µ + A(0)

ν ∂µξν = 0;
δξg

(0)
µν = ∇(0)

µ ξν + ∇(0)
ν ξµ = 0,

(6)

where a superscript (0) over the covariant derivatives indicates that they are computed with
respect to the classical VEVs. Thus, gauge transformations do not change the values of

4 It is possible to drop this last condition without affecting the final conclusions. Here we keep it so as to maintain a
greater similarity between the behavior of gµν and Aµ.
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A(0)
µ (x̄) and g(0)

µν (x̄). By contrast, the symmetry group consists of transformations that obey
equations (6) everywhere on M. It will be the same as in the Minkowskian case, except for the
replacement of the Poincaré group by the isometry group of the metric g(0): S(0) = G×I (g(0)).
We conclude that when the VEV of the metric is not flat but the VEV of the gauge field is flat,
it is still true that internal and spacetime symmetries (if any) do not mix.

Let us now consider more general situations when also the VEV of the gauge field is
nontrivial (we do not need to make any assumption about the global topology). In such cases
there is no natural choice of trivialization for P and as a result it is in general impossible to
meaningfully split the invariance group I into spacetime and internal transformations. The
group I is the group of automorphisms of P, i.e. diffeomorphisms of P that map fibers into
fibers and commute with the right action of G on P. If an automorphism u maps the fiber over
x to the fiber over y, to u there corresponds naturally a diffeomorphism f which maps x to y.
The automorphisms u for which f is the identity of M are called the vertical automorphisms
and form a normal subgroup I∗. These transformations can meaningfully be called ‘internal’,
and it is again true that I/I∗ = D. However now, unlike in previous examples, there is
no natural way of realizing D as a subgroup of I. In a given (local) trivialization one
may call ‘spacetime transformations’ those of the form (x, y) �→ (f (x), y), but in another
trivialization the same transformation will no longer be of the same form, and since there
are no preferred trivializations there is no preferred subgroup that one may invariantly call
‘spacetime transformations’. So, I is no longer a semidirect product. Neither is the normal
subgroup of gauge transformations G whose infinitesimal parameters satisfy equation (5).

The symmetry group is now more complicated to describe. Since I has a subgroup of
internal transformations, but no subgroup of spacetime transformations, for a given field A(0)

µ

it is still meaningful to look for an algebra of functions ε such that δεA
(0)
µ = 0, but it makes

no longer sense to look for transformations such that δξA
(0)
µ = 0. Instead one must in general

look for pairs (ε, ξ) such that δεA
(0)
µ +δξA

(0)
µ = 0. The problem of determining all gauge fields

that are invariant in this sense has been addressed in the literature [4, 5]. We will not discuss
this in detail but merely give a name S(A(0)) to the group of transformations that leave A(0)

µ

invariant.
In general S(A(0)) may have a subgroup S∗(A(0)) of internal symmetries which generalizes

the group of rigid internal transformations. If we try to define a ‘rigid’ action of a subgroup
K ⊂ G on P by saying that in a given (local) trivialization (x, y) �→ (x, ky),5 the result
is not well defined in general, because such an action does not commute with the action of
gauge transformations, which is given by (x, y) �→ (x, g(x)−1y). However, if the transition
functions of the bundle P have values in ZG(K), the centralizer of K in G, then we can identify
a ZG(K)-subbundle Q ⊂ P and have a well-defined action of K on Q. Then, a gauge field has
(internal) symmetry group S∗(A(0)) = K if and only if it can be regarded as a connection in
Q, or equivalently its holonomy has values in ZG(K) [6]. This gives indeed K = G if A(0) is
flat and if G is Abelian, G is always a symmetry of any gauge field.

Returning to the general discussion, the symmetries of the theory must leave A(0)
µ and g(0)

µν

invariant, so the condition (s3) reads

D(0)
µ ε + ξν∂νA

(0)
µ + A(0)

ν ∂µξν = 0, ∇(0)
µ ξν + ∇(0)

ν ξµ = 0. (7)

Condition (s2) says simply that the parameters ε and ξ and their first derivatives must not all
simultaneously vanish at x̄. The symmetry group is S(0) = I (g(0)) ∩ S(A(0)), and in general
it consists of mixed internal and spacetime transformations.

Before discussing examples, let us return to the issue of gauge dependence: the definition
of the symmetry group that we have used so far depends on the unphysical choice of
5 One cannot use the right action (x, y) �→ (x, yk) because such transformations leave ψ and Aµ invariant.

5



J. Phys. A: Math. Theor. 41 (2008) 335403 R Percacci

representatives
(
A(0)

µ , g(0)
µν

)
. The fact that the symmetry groups of different representatives

are conjugate subgroups in I, and hence isomorphic, should reassure us that we are not being
deceived by gauge illusions. Still, to be completely sure, we now discuss an alternative
definition of symmetry group that does not require the choice of a representative. We work
in the general case when neither A(0)

µ nor g(0)
µν are flat. The groups I and G are as before.

Since gauge-related fields are physically indistinguishable, a physical (though in practice not
a very useful) description of the degrees of freedom of the theory is by gauge equivalence
classes of pairs (Aµ, gµν), denoted by [Aµ, gµν]. If we denote by C the space of gauge fields
and M the space of metrics, the group I acts on C × M as in (1,2) and its normal subgroup
G acts on C × M without fixed points, so that (C × M)/G is a smooth infinite-dimensional
manifold [7, 8]. Since G is normal in I, the action of I on C × M defines an action of I/G
on (C × M)/G. The vacuum of the theory can be gauge invariantly described as a point[
A(0)

µ , g(0)
µν

]
in (C × M)/G and according to condition (s3) the symmetry group of the theory

is the subgroup S ⊂ I/G that leaves the vacuum invariant.
This group can be described as follows. Let I(0) ⊂ I be the subgroup of transformations

u that map a given representative pair of the vacuum
(
A(0)

µ , g(0)
µν

)
to another pair in the same

equivalence class. This means that
(
A(0)

µ , g(0)
µν

)
u = (

A(0)
µ , g(0)

µν

)
u′, (8)

where u, u′ act by pullback and u′ ∈ G. If
(
A(1)

µ , g(1)
µν

)
is another representative in the

same equivalence class, (8) implies that
(
A(1)

µ , g(1)
µν

)
u = (

A(1)
µ , g(1)

µν

)
u′′ for some other gauge

transformation u′′ (this follows from the normality of G). Therefore the group I(1) coincides
with I(0). Thus, we can gauge invariantly characterize I(0) as the subgroup of I that maps
any representative of the vacuum into another representative of the vacuum. Now, obviously
G ⊂ I(0) is a normal subgroup but I(0) may contain some elements that are not in G. In fact
equation (8) implies that u = ūu′ where ū ∈ S(0). Then, the symmetry group of the theory is
S = I(0)/G and it is isomorphic to S(0), for any choice of representatives.

This can be seen a little more explicitly as follows. All representatives of the vacuum have
the same values at x̄:

(
A(0)

µ (x̄), g(0)
µν (x̄)

)
and all infinitesimal gauge transformations satisfy (7)

at the point x̄. The Lie algebra of S consists of infinitesimal transformations that satisfy (7) at x̄
without satisfying (5). Such transformations are parametrized by the values of ε, ξµ and their
first derivatives at x̄. Given any representative of the vacuum

(
A(0)

µ , g(0)
µν

)
if the equations (7)

admit solutions, such solutions are uniquely characterized by the initial data provided by
the values of ε, ξµ and their first derivatives at x̄.6 Thus, the Lie algebra of the group S is
isomorphic to the Lie algebra of the group S(0) discussed earlier, for any fixed pair

(
A(0)

µ , g(0)
µν

)

chosen in the gauge equivalence class of the vacuum. We see that the alternative, gauge
invariant definition of the vacuum gives the same result as the one based on the background
field method.

Let us summarize the main conclusions of this discussion. We have carefully distinguished
between generic invariances of the action, gauge invariances and symmetries in a gauge theory
coupled to gravity. In the gauge group, spacetime and internal transformations are always
mixed in the sense that they do not form commuting subgroups. If the vacuum can be
described by (the gauge equivalence class of) classical fields A(0)

µ and g(0)
µν , the symmetry

group is S = I (g(0)) ∩ S(A(0)), where I (g(0)) is the isometry group of g(0)
µν and S(A(0)) is the

symmetry group of A(0)
µ . This result is gauge invariant. It holds also for asymptotically flat

vacuum states, if we interpret x̄ as the point at infinity, as in the first example.

6 Let us stress that equations (7) cannot in general be solved for arbitrary such initial data. In particular the derivatives
∂µε are not free parameters.
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The symmetry group may contain a subgroup S∗(A(0)) ⊂ G of internal symmetry
transformations. Such internal rigid transformations can only be defined in special cases.
For example, if A(0) is flat S∗(A(0)) = G is the group of ‘rigid’ internal transformations. In
general if A(0) is not flat one cannot define these transformations. A physical consequence
of this, which has been known since long, is the impossibility of defining the non-Abelian
charges in the background of a monopole [9, 10]. The preceding discussion shows that this
kind of phenomenon is more general and is not limited to gauge fields with nontrivial topology.

If one considers transformations which are not the identity of M, and if the VEV
of the gauge field is not flat, in general I has no subgroup that can be identified as
spacetime transformations and the transformations in S are actually mixtures of internal
and spacetime transformations. Examples of this phenomenon have also been known since
long in soliton physics. For example non-Abelian monopoles do not have separate symmetries
for spatial rotations and internal transformations; the only symmetries are combinations of
these transformations and the conserved Noether charges are the sum of angular momentum,
spin and isospin generators [11, 12]. Note that when the metric is flat, as is the case in these
examples, any nonflat gauge field will break Poincaré invariance, so this mixing of internal
and spacetime symmetries does not conflict with the original CM theorem.

These investigations have been stimulated in part by recent discussions of unified theories.
One way of achieving a unification of gravity and gauge interactions is to treat the Lorentz
(gravitational) connection and the Yang–Mills gauge field (for some group G) as components
of a connection of a larger unifying group [13–17]. There has been some debate about the way
in which such theories avoid conflict with the CM theorem. For instance, in some models,
due to the presence of a cosmological constant, the ground state of the theory would be de
Sitter space. The CM theorem does not hold in de Sitter space, so, it has been argued, such
theories would allow mixing between internal and spacetime symmetries. To clarify this
point, recall that the order parameter for such unification is some generalized version of the
vierbein. The theory can be in various phases, depending on the VEV of this order parameter.
In the ‘broken’ phase in which gravity is separated from other gauge interactions, the VEV
of the metric is nonzero; let us assume for the sake of argument that it is de Sitter space, and
that the VEV of the G gauge field is flat. The classic CM theorem cannot be applied, but
the preceding discussion shows that there would still be no mixing between the internal and
spacetime (de Sitter) symmetries. So, the cosmological constant is irrelevant for this issue. On
the other hand in the ‘fully symmetric’ phase the VEV of the metric would be zero. This is a
different, ‘topological’ state of the theory that we have not even considered here. As discussed
in [14], the CM theorem does not forbid the mixing of internal and spacetime symmetries in
a topological phase, nor does any other argument of the type given here.
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